Specification	Learning Outcomes	Resources	Homework	Lesson
1. Algebraic Fractions	Be able to split a fraction whose	Pearson Chapter 1	PPQ's	Weeks 1 and 2
Rational functions.	denominator is a product of linear expressions, e.g. $\frac{2x+3}{x(x+1)}$	PPQ's		
Partial fractions (denominators	Be able to split a fraction where one	Solomon		
not more complicated than	(or more) of the factors in the	Worksheets A and B		
repeated linear terms)	denominator are squared, e.g. $2x + 3$	(Partial Fractions)		
	$\overline{x^2(x+1)}$			
	Deal with top-heavy fractions where			
	the highest power in the denominator is			
	greater or equal to the highest power in			
	the denominator, e.g. $\frac{x^2 + 2}{x(x+1)}$			

2. Binomial Expansion	Expanding out an expression of the form $(1 + kx)^n$, where <i>n</i> is negative or	Pearson Chapter 3	Solomon Worksheets A-C – good for practice	Weeks 3 and 4
Binomial series for any rational n	fractional.	PPQ's	PPQ's	
	Expanding out an expression of the form $(a + kx)^n$, where <i>a</i> needs to be factorised out first.	Solomon Worksheets – Series A-C		
	Finding the product of two Binomial expansions, e.g. $\frac{\sqrt{1+x}}{\sqrt{1-x}}$ goes to $(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$			

3. Vectors	Find the point of intersection of two	Pearson Chapter 5	PPQ's	Weeks 5, 7-9
	lines or prove that two lines do not			
Vectors in two and three	intersect.	PPQ's	Solomon Worksheets A-F	
dimensions				
	Find the angle between two lines.	Solomon		
Magnitude of a vector		Worksheets A-F		
	Finding a missing $x/y/z$ value of a			
Algebraic operations of vector	point on a line			
addition and multiplication by				
scalars, and their geometrical	Find the length of a vector or the			
interpretations.	distance between two points			
1	distance between two points.			
Position vectors.	Find the nearest point on a line to a			
	point not on the line (often the origin)			
The distance between two points	- note: not in your textbook!			
1	note. not in your textbook!			
Vector equations of lines	Show lines are perpendicular			
	Show miles are perpendicular.			
The scalar product. Its use for	Show a point lies on a line			
calculating the angle between	Show a point nes on a fine.			
two lines	Show 2 points are collinear (i.e. lie on			
	show 5 points are commean (i.e. he on the same straight line)			
	the same straight line)			
	Find the area of a rectangle,			
	parallelogram or triangle formed by			
	vectors.			

C4 Scheme of Work 2017/18				
August 21, 2018				
 4. Coordinate Geometry in the (x, y) plane Parametric equations of curves and conversion between Cartesian and parametric forms. 	Know that $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dy}{dx}}$ Be able to integrate parametric equations. Be able to convert parametric equations into a single Cartesian one.	Pearson Chapter 2 PPQ's	PPQ's Exercises from the book Ex: 2D, Ex: 2E	Weeks 10-13

August 21, 2018

	· · · · · · · · · · · · · · · · · · ·			
5. Differentiation	Appreciate that $y = a^x$ represents	Pearson Chapter 4	PPQ's	Week 15-17
Differentiation of simple functions defined implicitly or parametrically	'exponential growth' when $a > 1$, and 'exponential decay' when $0 < a < 1$ (and from C3, know the graphs for each).	PPQ's Solomon Worksheets A-F	Solomon Worksheets A-F	
Exponential growth and decay.	d = x + x + x + x + x + x + x + x + x + x			
Formation of simple differential equations.	which that $\frac{d}{dx}a^{2} = a^{2} i h a$ (proof unlikely to be asked for)			
	Be able to differentiate implicitly, e.g. $\frac{d}{dx}y^2 = 2y \frac{dy}{dx}$ and subsequently be able to make $\frac{dy}{dx}$ the subject.			
	Be able to set up differential equations, e.g. understand that "the temperature falls at a rate proportional to its current temperature" could be represented as $\frac{dT}{dt} = -kT$			
	Connect different derivatives involving rates, e.g. $\frac{dA}{dx} = \frac{dA}{dt} \times \frac{dt}{dx}$			

6. Integration	Integrating trig functions, including reciprocal functions and squared	Pearson Chapter 6	PPQ's	Week 18-25
Integration of e^x , $1/x$, sin x, cos	functions $\sin^2 x$, $\cos^2 x$, $\sec^2 2x$, etc.	PPQ's	Solomon Worksheets A-P	
х.				
	Integrating by 'reverse chain rule' (also	Solomon		
Evaluation of volume of	known as 'integration by inspection').	Worksheets A-P		
revolution				
	Integrating by a given substitution.			
Simple cases of integration by				
substitution and integration by	Integration by parts.			
reverse processes of the chain				
and product rules respectively	Integrating by use of partial fractions.			
and produce rules respectively.	Integrating ton heavy fractions by			
Simple cases of integration using	algebraic division			
partial fractions.				
	Be able to differentiate parametric			
Analytical solution of simple	equations: $\int y dx = \int y \frac{dx}{dt} dt$			
first order differential equations	equations: $\int y dx - \int y \frac{dt}{dt} dt$			
with separable variables.	Calculate volumes of revolution both			
	for normal and parametric equations: V			
Numerical integration of	$=\pi\int y^2 dx$			
lunctions	$V = \pi \int v^2 \frac{dx}{dt} dt$			
	dt			
	Solve differential equations. e.g. dv			
	u y - x y + x			

August 21, 2018

Mock Week Dates: Week 6, 13, 19 & 24